

RJL485 Recessed Remodel LED Downlight CCT Select

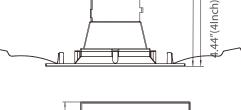
FEATURES

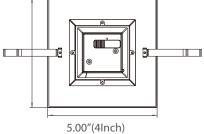
The RJL Quick Fit downlight combines a residential remodel can plus a trim in one fixture. The driver and junction box are integral to the fixture and the Quick Fit does not require a recessed housing for installation, making it ideal for applications where ceiling or top access is not available to service these luminaires. An easy 5-Color SeleCCTor switch allows the contractor to easily switch between color temperatures in the field. The Quick Fit is ideal for new construction or remodel applications including hospitality, retail, light commercial, and high-end residential.

LUMENS	700
ССТ	27K/30K/35K/40K/50K
CRI	90+
COLOR QUALITY	3 Step MacAdam Ellipses
TRIM	Aluminum die-cast body and trim
REFLECTOR COLORS	WH (White)
FLANGE COLORS	W (White)
DIMMING	DIMTR (Triac)
LIFETIME	L70 at 50,000 Hours
EMERGENCY	16W high voltage inverter (Installed into the housing)*
PHOTOMETRIC TESTS	In Accordance with IES LM79-08, LM80 and TM-30, TM-21
* Conquit Footory	

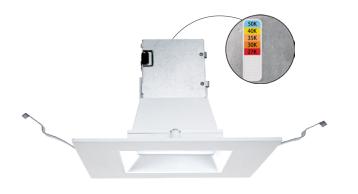
* Consult Factory

EASE OF INSTALLATION


Quick Fits are provided with two captive torsion springs tailored to fit in most residential housings. The Quick Fit is secured in place onto the ceiling by two retention springs and can easily be removed from the ceiling to allow for driver access. An NEC-rated junction box and driver allow for daisy-chain and feed-through wiring. Quick Fits come standard with quick connectors ready for installation.



F I G


easy 5 colors SELECCTOR

NOMINAL LUMENS	DELIVERED LUMENS	WATTAGE
700	896	9W

Based on 3000K, 90+ CRI. Actual wattage may vary +/- 5%

Backlit LEDs are deeply regressed and shielded by a frosted diffuser lens, providing glare-free, even illumination.

CONSTRUCTION

Die-cast aluminum body for maximum heat dissipation.

EASY 5-COLOR SELECCTOR SWITCH

Easy 5-Color SeleCCTor switch can be adjusted to a choice of 5 different Kelvin color temperatures in the field. Options include 27K/30K/35K/40K/50K. The SeleCCTor switch is located on the junction box for easy adjustment before and after installation. The SeleCCTor switch is easily accessible by lowering the luminaire from the opening.

FLEXIBILITY - MULTIPLE APERTURES, TRIM TYPES AND FINISHES

Quick Fit is available in 4", 5", 6", and 8" in round and square apertures. Trim options include reflector, baffle, and adjustable in round or square. Product is shipped standard with white finish and available in a variety of trim rings that are field-installable (Black, Satin Nickel, Copper, and Bronze) for maximum design flexibility.

NO HOUSING REQUIRED FOR INSTALLATION

Quick Fit can be installed in the ceiling without a recessed housing. A cut-out template sticker is provided for ease of installation.

DRIVER ELECTRICAL INFORMATION

Driver is rated for 50 to 60Hz at 120V/277V input, produces less than 20% THD, has a power factor between 90% and 100%, and is thermally protected for additional safety.

DIMMING & DRIVER INFORMATION

DIMTR - Triac & electronic low voltage (DIMTR-120) dimming. Available in 120V. Dimmable down to 10% of initial lumens, standard.

APPLICATIONS

Damp and wet-location-rated ideal for indoor and outdoor use, shower, and other wet-location applications. IC-Rated and Air Tight and may be installed in direct contact with insulation.

WARRANTY

Five-year warranty for parts and components. (Labor not included)

LISTINGS

Energy Star cETLus Title 24 JA8 JA8 RoHS IECC New York State

EXAMPLE: RJL485-700L-DIMTR-120-30K-90-W-WH

TYPE	LUMEN	CCT	CRI	FINISH
RJL485	Diversional Technology 2011 Technology 2012 Te	27K/30K/35K/40K/50K	90+	D W-WH-White

RJL485-700L-DIMTR-120-5CCT-90-W-WH

RJL485-700L-DIMTR-120-5CCT-	90-W-WH											TE	EST NC).: ELC	7092023
INPUT WATTS: 9.62065 LUMEN	S: 896		CRI: 90		EFFICAC	Y: 93		CCT: N/A				S	PACINO	G CRIT	ERIA: 1.12
Candle Power Distribution (Candelas) Zonal Lumens Summary				Luminance (Average candela/M ²)			Lumens Per Zone			Candela Tabulation					
147	Zone	Lumens	%Lamp	%Fixt	Angle in	Average 0°	Average	Average	Zone	Lui	mens			0	
	0-20	204.54	22.80	22.80	Degrees	Average o	45°	90°	0-10	5/	4.78		0	585.	
	0-30	410.41	45.80	45.80	45	95197	100899	103823	10-20		+.76 9.76		5 15	577. 528.	
293	0-40	618.59	69.10	69.10	55	52267	57041	60288	20-30		5.87		25	440	
H	0-60	868.04	96.90	96.90	65	13251	17042	18605	20-30		8.18		35	319	
440	0-80	894.31	99.90	99.90	75	794	992	251	40-50		1.81		45	196	
50°	0-90	894.36	99.90	99.90	85	196	196	79	40-50 50-60		7.64		55	87.	58
40°									60-70		4.07		65	16.	
586									70-80		.20		75	0.6	
20°					ity Method				80-90				85 90	0.0 0.0	
10°	Effectiv	e Floor Cavi	ty Reflecta	nce 0.20					00-90	0	.00		50	0.0	
Cone of Light	RC		80%		70% 50%		30%			10%			0%		
2 203 fc 2.7 ft 2.7 ft	RW	70% 50			70% 50%	30% 10		30% 10		30%	10%	50%	30%	10%	0%
4 53.8 fc 5.2 ft 5.2 ft	0	119 11 112 10			116 116 110 107	116 11 104 10		111 11 100 9		106 97	106 95	102 95	102 94	102 92	100 91
6 23.4 fc 7.8 ft 7.8 ft	2	105 99		90	102 97	92 8		90 8		87	85	88	85	83	81
	e ³	98 90		79	96 88	83 71		81 7		79	75	81	77	74	72
8 13.1 fc 10.5 ft 10.5 ft	011A 4 5	91 82 85 75		70 62	89 81 83 74	74 69 67 63		73 6 66 6		71 65	67 61	74 68	70 64	67 60	65 58
10 8.5 fc 13 ft 13 ft		80 69		56	78 68	61 56		60 5		59	55	63	58	54	53
12 5.86 fc 15.6 ft 15.6 ft	6 7 0	75 6		51	73 62	56 5		55 5		54	50	58	53	50	48
(FT.)Distance to Plane (FT.) Initial (FT.) Beam (FT.) Beam Vert. Spread Horiz. Spread		70 51 66 54		46 42	69 58 65 54	51 44 47 43		50 4 46 4		50 46	46 42	54 51	49 46	45 42	44 40
Plane Nadir Vert. Spread Honz. Spread	WOOU 9 10	62 5		39	61 50	43 39		40 4		43	39	47	40	39	37
DEAM DIA: MEASONED AT 30% OF NADIN P.C.	RC - Ceilin	g Cavity Reflect	ance	RW - Wall Re	flectance										